ABSTRACT

Wearable technology has rapidly gained popularity, offering devices like fitness trackers, smartwatches, and health monitors that track various health indicators. While widely used for personal health tracking, wearable tech has the potential to revolutionize healthcare by providing valuable data to healthcare providers. The development of wearable medical equipment has also improved healthcare quality and access in low-income countries. Current applications include smartwatches and fitness trackers monitoring patients’ activity and heart rate, enabling personalized care. Wearables offer real-time health data and interventions, supporting preventive, predictive, personalized and participatory medicine. Challenges include data security, standardization, data accuracy, requiring cohesive regulations and technological advancements. Wearable tech’s future in healthcare lies in overcoming compatibility limitations, extending battery life and enhancing multi-functionality. By addressing these challenges, wearable devices can lead to comprehensive healthcare solutions, improved patient outcomes, transforming the way healthcare is delivered.

INTRODUCTION

Wearable technology (WT) has become increasingly popular in recent years, with devices such as fitness trackers, smartwatches and health monitors gaining widespread adoption. These devices are designed to track various health indicators, including activity levels, heart rate, sleep patterns and more. While individuals have primarily used WT for personal health tracking, it also has the potential to revolutionize healthcare delivery by providing valuable data to healthcare providers. The development of wearable medical equipment has increased the popularity and quality of healthcare. Moreover, these developments have alleviated the shortage of medical resources in low-income countries and promoted the development of medical care worldwide. However, while the wearable medical device industry is still in development and faces several important limitations preventing further use of WT in medical practice.

Current State of WT in Healthcare

WT in healthcare has immense potential to revolutionize patient care through real-time health data and timely interventions. Despite being in the early stages, recent advancements are promising. Smartwatches and fitness trackers, initially for personal use, now play a crucial role in monitoring patients’ activity and heart rate, enabling personalized care. These wearables hold great value in healthcare. In the medical field, portable devices worn on the body offer functionalities like recording, analyzing health data, intervening for better health management and disease treatment, supported by identification, sensing, connection, cloud services and storage technologies. Embracing wearable technology can lead to more efficient and patient-centric healthcare, propelling the industry towards a better future.

According to modern medical perspectives, wearable devices are aligned with the 4P medical model, encompassing preventive, predictive, personalized, and participatory medicine. These devices are poised to advance precision medicine by measuring clinically relevant parameters that reflect individuals’ health status. Moreover, the highlight the pivotal role of wearable medical devices as enablers and key drivers in the emergence of connected healthcare.
devices’ successful operation and implementation rely on various wearable technologies, including sensor technology, medical chip technology, wireless communication technology, power management technology, display technology and information feedback technology. 5

Wearable devices have gained significant popularity in recent years due to their potential for cutting-edge health research data generation. Health monitors are a valuable category of wearables, capable of tracking various health indicators such as blood pressure, glucose levels and oxygen saturation. These devices play a crucial role in monitoring patients with chronic conditions like diabetes or heart disease, enabling improved health management and timely medical interventions. Additionally, remote patient monitoring devices have become essential tools in healthcare settings, particularly for post-surgery recovery and chronic conditions. Healthcare providers can promptly respond to critical changes by continuously monitoring vital signs, ensuring timely and appropriate medical attention. Among the most popular wearables are fitness trackers and accelerometer wearables, mainly used for measuring movement, steps, heart rate and sleep. Other wearable devices measure blood pressure, skin temperature, oximetry and respiratory rate, with wrist-worn devices being the most common choice. 6,7

Potential Applications of WT in Healthcare

WT has the potential to transform healthcare delivery by providing real-time data on patients’ health status and allowing healthcare providers to monitor and intervene in real time. Some potential applications of WT in healthcare include:

Chronic Disease Management: WT offers a valuable tool for monitoring patients with chronic conditions like diabetes or heart disease. These devices provide healthcare providers with crucial insights into patients’ conditions by continuously collecting and analysing health data. With real-time access to such data, healthcare professionals can make informed decisions, adjust treatment plans and implement timely interventions to manage better and improve the health of patients with chronic illnesses.

Remote Patient Monitoring: WT plays a vital role in remote patient monitoring, particularly for individuals recovering from surgeries or those with chronic conditions requiring constant supervision. By wearing these devices, patients’ vital signs and health indicators can be continuously monitored, providing healthcare providers a comprehensive view of their health status. This constant oversight enables timely interventions if any concerning changes or complications arise, improving patient outcomes and reducing the need for frequent hospital visits.

Clinical Trials: WT’s real-time data collection capabilities make it an invaluable asset in clinical trials. Researchers can employ wearable devices to gather accurate and up-to-date health data from participants, enabling them to monitor the impact of treatments and interventions more effectively. This data-driven approach enhances the efficiency and accuracy of clinical trials, ultimately advancing medical research and developing new treatments.

Telehealth: The integration of WT in telehealth settings brings healthcare directly to patients’ homes. Wearable devices allow healthcare providers to remotely monitor patients’ health status and receive real-time feedback on their conditions. This approach not only enhances accessibility to healthcare but also facilitates more personalized and patient-centric treatment plans, allowing individuals to receive timely medical attention without leaving their homes.

Public Health Surveillance: WT’s capacity to track health indicators and gather data from large populations makes it a valuable tool for public health surveillance. Public health authorities can make informed decisions and implement targeted interventions to control outbreaks and safeguard public well-being by monitoring the spread of infectious diseases and tracking population health trends.

Challenges and Opportunities Associated with WT

The healthcare system’s primary challenge is to facilitate wearable technology adoption by transforming the care model and promoting information sharing. Successful data collection, transfer, preservation and sharing require technical solutions and the development of a legal framework that allows different organizations to share data and take responsibility for patient care. Patient autonomy in wearable health devices is essential to empower individuals as active participants in their care. Conversely, there is a need to regulate the responsibilities of clinicians regarding misdiagnosis legally and missed diagnoses resulting from unreliable or delayed data and false alarms associated with wearable devices. 8 Striking the right balance between patient empowerment and clinical accountability is crucial to harness the full potential of WT in healthcare.

With their sensor technology, wearable health devices can gather diverse user information, including health data, location details and lifestyle habits. However, the extensive range of data formats, vast scale and numerous mobile connections involved in this process can heighten the risk of data breaches and tampering. 11,12 Implementing strategies that guarantee this data’s security and enhance public trust in wearable technology becomes crucial. Safeguarding sensitive information and ensuring data integrity are paramount concerns that must be addressed to foster widespread adoption and acceptance of these devices in the healthcare ecosystem.

In the absence of uniform industry standards and regulations, companies tend to develop their proprietary standards and regulations based on their core products, leading to challenges in resource integration. Therefore, there is a pressing need to establish and enforce new regulatory standards. By implementing cohesive and universally recognized standards, the interoperability of wearable technologies can be improved, fostering better collaboration among companies and promoting seamless integration of resources. 13
Data accuracy is a critical concern in wearable devices. On the one hand, the current sensors in wearable devices may lack specificity, leading to the detection of benign non-clinical signals and potentially causing misdiagnosis, unnecessary tests and patient distress. On the other hand, the sensors’ sensitivity may need to be improved, leading to the omission of crucial clinically-relevant parameters and potentially resulting in missed diagnoses and delays in treatment. Striking the right balance between sensitivity and specificity is essential to ensure the reliability and effectiveness of wearable health devices, minimizing the risk of false positives and false negatives and maximizing their potential to improve patient care.14,15

Wearable devices need more compatibility, mainly focusing on health monitoring rather than making significant progress in clinical treatment. Integration of multiple functions in wearable medical devices is scarce, with only a few effectively combining various capabilities.17 This single-function nature hampers the full potential of WT in providing comprehensive healthcare solutions. Enhancing compatibility and fostering the development of multifunctional wearable devices could lead to more impactful advancements in patient care and treatment options.

Achieving long-lasting battery life in wearable devices has been an exciting yet challenging task in their design. The need for low-power consumption and high-energy storage poses significant engineering hurdles. Striking a balance between power efficiency and performance is essential to ensure that wearable devices can operate seamlessly for extended periods, offering users a more convenient and reliable experience. Ongoing efforts to overcome this challenge are crucial for unlocking the full potential of WT in healthcare and other domains.

CONCLUSION

The success and benefits of wearable devices for the ageing global population are evident, but further industry development requires addressing key aspects. Strengthening oversight with specific security rules and clarifying medical responsibilities is vital to protect personal data. Establishing industry standards based on healthcare data will enable mutual recognition of medical information. Technological advancements in low-consumption sensors, high-performance batteries, efficient medical chips and improved human-computer interaction will enhance accuracy, processing speed, battery life and user experience. Addressing these aspects, wearable devices can lead to comprehensive healthcare solutions and improved quality of life. However, challenges like data security, standardization, user adoption, data analysis and cost must be considered and addressed to ensure ethical and legal compliance and maximize the potential of Wearable technology in healthcare, transforming patient outcomes.

CONFLICT OF INTEREST: None

FINANCIAL DISCLOSURE: None

REFERENCES: